Comparing Two Regularization Techniques for Diffuse Optical Tomography
نویسندگان
چکیده
Two techniques to regularize the diffuse optical tomography inverse problem were compared for a variety of simulated test domains. One method repeats the single-step Tikhonov approach until a stopping criteria is reached, regularizing the inverse problem by scaling the maximum of the diagonal of the inversion matrix with a factor held constant throughout the iterative reconstruction. The second method, a modified Levenberg-Marquardt formulation, uses an identical implementation but reduces the factor at each iteration. Four test geometries of increasing complexity were used to test the performance of the two techniques under a variety of conditions including varying amounts of data noise, different initial parameter estimates, and different initial values of the regularization factor. It was found that for most cases tested, holding the scaling factor constant provided images that were more robust to both data noise and initial homogeneous parameter estimates. However, the results for a complex test domain that most resembled realistic tissue geometries were less conclusive.
منابع مشابه
An Efficient Method for Model Reduction in Diffuse Optical Tomography
We present an efficient method for the reduction of model equations in the linearized diffuse optical tomography (DOT) problem. We first implement the maximum a posteriori (MAP) estimator and Tikhonov regularization, which are based on applying preconditioners to linear perturbation equations. For model reduction, the precondition is split into two parts: the principal components are consid...
متن کاملLocal diffusion regularization method for optical tomography reconstruction by using robust statistics.
We formulate a solution to the diffuse optical tomography (DOT) inverse problem as the minimization of an energy functional of the solution and the data. For the solution prior we introduce a local diffusion regularization potential with a threshold based on robust statistics (the Hubert function). We compare results on simulated data for the Hubert function and two other standard regularizatio...
متن کاملMinimal residual method provides optimal regularization parameter for diffuse optical tomography.
The inverse problem in the diffuse optical tomography is known to be nonlinear, ill-posed, and sometimes under-determined, requiring regularization to obtain meaningful results, with Tikhonov-type regularization being the most popular one. The choice of this regularization parameter dictates the reconstructed optical image quality and is typically chosen empirically or based on prior experience...
متن کاملModel-resolution based regularization improves near infrared diffuse optical tomography.
Diffuse optical tomographic imaging is known to be an ill-posed problem, and a penalty/regularization term is used in image reconstruction (inverse problem) to overcome this limitation. Two schemes that are prevalent are spatially varying (exponential) and constant (standard) regularizations/penalties. A scheme that is also spatially varying but uses the model information is introduced based on...
متن کاملState space regularization in the nonstationary inverse problem for diffuse optical tomography
In this paper, we present a regularization method in the nonstationary inverse problem for diffuse optical tomography (DOT). The regularization is based on a choosing time evolution process such that in a stationary state it has a covariance function which corresponds to a process with similar smoothness properties as the first-order smoothness Tikhonov regularization. The proposed method is co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007